

Diamond Turned Composite Mirrors

Presented at

Tech Days 2003
NASA Marshall Space Flight Center

Dr. Abdel Abusafieh

Acknowledgments

- David Lehner @ NASA-Marshal Space Optics Measurements Technology Center
- Nelson Ferragut & John Vranish @ NASA-Goddard
- Eri. J. Cohen @ NASA-JPL for Technical Guidance
- Dan Federico, John Ruffoni, and Steve Connell @ COI

How Do Composites Fit in the Design Box?

- Low Density and High Modulus
- Tailorable (Near Zero) CTE and Low Thermal Expansions In-Plane
 - » Ambient and/or Cryo
- Attractive In-Plane Thermal Properties
- Low Material Cost
- Component Robustness (high Fracture Toughness)
- Processing Scalable to Very Large Sizes
- Athermal Design of Lightweight Composite Mirror w/ Dimensionally Stable Structure
- Enabling Technology for Future Large Aperture Missions

Lightweight Mirror Technology Path

Implementation Challenges with Composites

- Micro-Level: Diffuse Surface Effects
 - » Fiber Print-Thru Limits Operational Wavelength

- Macro Level: Bonded Construction Effects
 - » Rib Print-Thru Effects Mirror Figure

New Approach: Diamond Turned Composite Mirror

- Eliminate Fiber Print-Through By Applying a Thin Layer of Cu Plating
- Plating Is Symmetric and Tailored for Optimum Smoothness
- Two Concepts Demonstrated
 - » Isogrid Sandwich Design
 - » Foam Sandwich Design

NASA Phase 2 SBIR Project Overview

Diamond Turned Composite

Contract: NAS5-00227

» Value: \$599,247

» Sponsor: NASA Goddard Space Flight Center

- Technical Objectives
 - » Produce Low Areal Weight Mirror ~10 kg/m²
 - » Produce Visible Quality Surface Figure and Roughness
 - > < λ/4 RMS Surface Figure Accuracy</p>
 - > < 30 Angstroms RMS Surface Roughness
 - » Provide Low CTE Mirror < 1.0 ppm/°C to Minimize Thermal Distortion</p>

SBIR Technical Approach

- Develop/Identify Foam Material Suitable for the Application
- Develop a Copper Plating Process
- Identify Capable Diamond Turning Vendor

Foam Development

- Target Characteristics
 - » Low Density (< 10 pcf or 0.16 g/cc)</p>
 - » Low CTE (< 0.5 ppm/F or 0.9 ppm/C)</p>
 - » Reasonable Thermal Conductivity (> 10 Watts/m-K)
 - » Uniform and Consistent Properties (Mainly Modulus & CTE)
- No Existing Foam Readily Meets These Requirements
- Development Effort Focused on Tailoring Two Existing Foams
 - » AETB Foam
 - » Poco Graphite Foam

Foam Development Poco Graphite Foam

Background

» High Thermal Conductivity

> In-Plane: 90 W/m-k

> Thru-Thickness: 245 W/m-k

» Low CTE

In-plane: 0.6 ppm/°C

> Thru-Thickness: -0.6 ppm/°C

» Planar Isotropy

Challenges

- » Heavy (0.55 g/cc)
- » Friable

Development

- » Lightweighting Concepts
- » Bonding Process
- » Foam Cell Coating
- Results: Developed a Foam Material with All Target Characteristics

Plating Development

- Target Plating Characteristics
 - » Compatibility with CFRP Substrates
 - » Very Low Grain Size (Sub-Micron)
 - » Tailorable & Uniform Thickness
- Leverage COI's Heritage with Plating on Composites
- Development Effort Focused on
 - » Grain Size Refinement
 - » Low Stress Plating
 - » Good Adhesion

Plating Development Grain Size Refinement

- Systematic Optimization of Process Parameters (DOE's)
 - » Bath Temp
 - » Current Density
 - » Brightener %
 - » Anode/Cathode Ratio

- High Quality Plating Achieved
 - » 0.3 0.5 Microns Average
 - » Uniform Thickness
 - » Good Adhesion to Substrate

Grain SizeFIB Images

Technology Demonstration

- ◆ Three Small Mirrors (5" Diameter) for Process Development Purposes
- One Demonstration Mirror (10" Diameter) with Foam Core
- One Demonstration Mirror (8" Diameter) with Isogrid Core

Technology Demonstration 250mm Foam Core Mirror

Mirror Design Features

- » Low Areal Density 12 kg/m²
 Demonstrated on Ø250mm Aperture
- » Copper Plated Facesheet (0.002" Cu Plating Thickness)
- » Low CTE Composite Facesheets (CTE < 0.1 ppm/°C)</p>
- » Low CTE Carbon Foam Core (CTE = 0.6 ppm/°C)
- » High Thermal Conductivity Core (245 W/m*K Out-of-Plane)
- » Robust Lightweighted Core Design for Optimized Optical Processing

Key Technology Demonstration

- » Diamond Turning Performed by NASA Marshall Space Flight Center
- » 20 25 Å Surface Roughness
- » 1/3 λ RMS Surface Figure Accuracy (λ = 0.6238 μ)

ATK 0.25m Foam Mirror Demonstrator

Technology Demonstration 200 mm Isogrid Core Mirror

- Key Mirror Design Features
 - 200mm Aperture at 9 kg/m² Areal Density
 - » Copper Plated Facesheet (0.076mm Cu Plating Thickness)
 - » Low CTE Composites < 0.1 ppm/°C</p>
 - » Low CTE Composite Isogrid Core < 1.5 ppm/°C</p>
 - » High Stiffness Lightweight Open Cell Core Design to Optimize Mechanical Performance
- Technologies Demonstrated
 - » Diamond Turning Performed @ NASA Marshall Space Flight Center
 - » 30 Å Average Surface Roughness
 - » 0.6 micron RMS Surface Figure

SUMMARY

- Plated-and-Diamond-Turned Composite Facesheet Approach Demonstrated
- Demonstrator Mirrors Achieved Significant Results
 - » Areal Density < 10 kg/m²</p>
 - » Roughness < 30 Å</p>
 - » Figure < 1/3 λ RMS
- Advantages of Diamond Turned Composite Mirror
 - » Eliminates Fiber Print-thru and Moisture Instability Typically Associated with Composite Mirror Approaches
 - » Scalable to Large Aperture, Aspheric
 - » Low Cost Fab and Processing